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Abstract

This work introduces a numerical algorithm to calculate frequency-response functions (FRFs) of
damped finite element (FE) models with fuzzy uncertain parameters. Part one of this paper describes the
numerical algorithm for the solution of the underlying interval finite element (IFE) problem. First, the IFE
procedure for the calculation of undamped envelope FRFs is discussed. Starting from the undamped
procedure, a strategy is developed to analyse damped structures based on the principle of Rayleigh
damping. This is achieved by analysing the effect of the proportional damping coefficients on the
subsequent steps of the undamped procedure. This finally results in a procedure for the calculation of fuzzy
damped FRFs based on an analytical extension of the undamped algorithm. Part one of this paper
introduces the numerical procedure. Part two of this paper illustrates the application of the methodology
on four numerical case studies.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The current status of numerical analysis tools enables a very precise simulation of physical
phenomena using a virtual numerical model. The broad applicability of numerical techniques in
combination with their very limited cost, have initiated an exponential increase of their use in the
see front matter r 2005 Elsevier Ltd. All rights reserved.
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design of new products. Consequently, the virtual prototyping phase has evolved to a substantial
part of modern design processes. Especially, the finite element (FE) method has become a very
popular tool for design validation and optimisation.
Nowadays, the computational capabilities of modern computers causes an evolution towards

the use of extremely detailed numerical models. While these models theoretically enable the
simulation of the vast majority of relevant physical processes, they also require a large amount of
numerical input data in order to describe the model and all of its details realistically. This means
that it becomes harder to ensure a general reliability of the detailed models, and consequently, of
the outcome of the numerical analyses based on these models. It is more and more acknowledged
that, in order to perform a trustworthy design validation based on such models, the
computational power could be of greater benefit when it is used for the inclusion of uncertainties
in the numerical model rather than for modelling all deterministic details. Furthermore, through
the inclusion of non-deterministic aspects, the numerical analysis will come closer to a description
of the actual behaviour of the modelled product since uncertainty and variability are inherent to
production processes.
Over the past decades, a number of methodologies have been developed that include uncertain

model properties in the FE analysis and aim at the quantification of the uncertainty on the
analysis result. The probabilistic concept is by far the most popular for numerical uncertainty
modelling. Its popularity has lead to a number of probabilistic FE procedures [1,2]. These
procedures are becoming increasingly popular, mainly due to their ease of use. However, there is a
growing awareness that non-deterministic properties cannot always be exactly represented using
the probabilistic concept. An actual variability, i.e., a property which will vary in the actual
product, is often not completely predictable, which leads to the introduction of assumptions
concerning its probabilistic description. On the other hand, some properties of the model which
are invariable in the actual product could be unknown or unspecified in an early design stage.
These are often referred to as uncertainties (see also Ref. [3] or the second part of this paper for a
clear description of variability and uncertainty). The probabilistic model in this case represents
personal opinion or preference of the designer rather than actual variability. In both cases, the
probabilistic model does not give an objective description of reality. Furthermore, a mixture of
both fundamentally different interpretations in a single probabilistic analysis might lead to
subjective or misleading conclusions. But next to these theoretical objections, there is also a
practical limitation associated with probabilistic analysis. The most popular implementation of
probabilistic numerical analysis is the Monte Carlo simulation [4]. This technique requires a large
number of deterministic calculations, and is therefore limited in its applicability when realistic
industrially sized models are analysed.
The inevitable presence of uncertainties and unpredictable variabilities in an early design stage

has initiated research activities towards non-probabilistic approaches for numerical uncertainty
analysis (see Ref. [5] for a more extensive description of the current status of non-probabilistic
approaches for uncertainty treatment in FE analysis). One of the most basic non-probabilistic
approaches is the interval finite element (IFE) method. Based on the interval concept, the non-
deterministic model properties are defined using a range between a lower and an upper bound.
Values outside this range are considered to be strictly impossible. The aim of the IFE procedure is
to calculate the range of possible analysis results taking into account all possible combinations of
the uncertain inputs within their allowable range. There have been some attempts to develop
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numerical algorithms for IFE analysis in specific domains [6–8]. Up to now, however, there exists
no generally applicable IFE procedure. Furthermore, a general criticism on the IFE procedure
often stated in literature refers to the problem of dependency within interval arithmetic. The fact
that parameter dependencies are lost throughout the interval procedure causes an artificial
overestimation in each step of the interval algorithm, which can lead to an undesirably
high amount of conservatism in the final IFE analysis result. This is explained in more detail in
Section 2.3. Also in this section, a remedy for this conservatism is introduced, based on a hybrid
optimisation-interval arithmetic procedure.
The IFE method requires the specification of strict bounds on all non-deterministic model

properties. These bounds may be subject to uncertainty. In order to analyse the influence of these
boundaries on the analysis results, a fuzzy finite element (FFE) method has been developed [9–12].
This paper briefly describes the main principle and some computational aspects of this method in
Section 2. In the following sections, the application of FFEM to frequency-response function
(FRF) analysis is described. Section 3 first summarises the undamped procedure. This procedure
is extended to proportionally damped models in Section 4.
2. The fuzzy finite element method

2.1. Fuzzy uncertainty modelling

The theory of fuzzy logic was introduced by Zadeh [13] in 1965, and has gained an increasing
popularity during the last two decades. Its most important property is that it is capable of
describing linguistic and therefore incomplete information in a non-probabilistic manner. This is
achieved using the concept of fuzzy sets. A fuzzy set can be interpreted as an extension of a
classical set. Where a classical set clearly distinguishes between members and non-members of the
set, the fuzzy set introduces a degree of membership, represented by the membership function. For
a fuzzy set ~x, the membership function is defined as m ~xðxÞ for all x that belong to the domain X

~x ¼ fðx; m ~xðxÞÞ j ðx 2 X Þðm ~xðxÞ 2 ½0; 1�Þg. (1)

This membership function describes the grade of membership to the fuzzy set for each element in
the domain. If m ~xðxÞ ¼ 1, x is definitely a member of the subset ~x. If m ~xðxÞ ¼ 0, x is definitely not a
member of the subset ~x. Opposed to the interval concept, fuzzy sets allow membership values
different from zero and one. For every x with 0om ~xðxÞo1, the membership is not certain. This
enables the representation of a value that is only to a certain degree member of the set.

2.2. Fuzzy arithmetic

Working with fuzzy numbers in a numerical context first requires a convention on how to
handle the combination of fuzzy numbers. For this purpose, an appropriate t-norm has to be
chosen. This work applies the t-min norm, which is by far the most widely adopted t-norm in
fuzzy numerical analysis. Its main benefit is that by applying the t-min norm within the extension
principle [14], the numerical result of a combination of fuzzy variables can be calculated using the
a-sublevel technique (see Ref. [5] for a proof). This technique subdivides the membership range
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into a number of a-levels. The intersection with the membership function of the input
uncertainties at each level results in an interval. With these input intervals of the a-sublevel,
an interval analysis corresponding to the deterministic analysis is performed. This results
in an interval for the analysis result at the considered a-level. Finally, the fuzzy solution
is assembled from the resulting intervals at each sublevel, repeating this procedure for a
number of a-sublevels. Fig. 1 clarifies this procedure for a function of two triangular fuzzy
variables.
The core problem of this procedure is the calculation of the result of the function in interval

arithmetic. An interval is denoted by xI ¼ ½x;x�. For a function of n fuzzy variables
f ð ~x1; ~x2; . . . ; ~xnÞ, the result is calculated at each a-sublevel from the solution set defined as

yI
a ¼ fy j ð9xi 2 xI

i a;8i ¼ 1; . . . ; nÞðy ¼ f ðx1;x2; . . . ; xnÞÞg (2)

with xI
i a describing the interval of the fuzzy variable ~xi at level a. This technique guarantees a

constant size of the data set during computation. Another advantage is that the calculation of a
fuzzy function can be optimised to a trade-off between computational effort and correctness by
selecting the number of a-sublevels.

2.3. Fuzzy finite element analysis

The FFE method as introduced by Chen [10] consists of the application of the a-sublevel
strategy on the numerical procedure of the deterministic FE analysis. From the previous section it
is clear that the solution of the interval problem corresponding to the FE analysis is the numerical
core of the method. Consider the interval vector xI of uncertain input parameters of the FE
model, referred to as the interval input parameter space. The interval solution requires a
procedure to calculate the range of possible FE analysis outcomes, given that all input parameters
� x1 
(x1)

� x2 
(x2)

� y (y)
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�2
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Fig. 1. Scheme of the numerical procedure to perform a fuzzy FE analysis using 4 a-sublevels.
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are within the interval input parameter space. A number of concepts have been developed for this
purpose. In the most commonly applied interval arithmetical approach, the total deterministic FE
procedure is translated to interval arithmetic using the interval counterparts of all basic
operations. The resulting procedure generally consists of two steps:
1.
 the translation of the interval input parameter space to an interval system description based on
interval system matrices,
2.
 the approximation of the solution of the analysis expressed as an interval problem using the
interval system matrices.

The assembly of the interval system matrices in the first step results from the translation of the
deterministic assembly procedure to interval analysis. It has been shown [5] that this step generally
introduces conservatism, since dependency between different elements of the model through
common interval parameters are lost in the assembly. Furthermore, the system interval matrix
does not model the dependencies between the elements of the matrix itself, and loses as such
important information on internal matrix correlations. The resulting interval matrices therefore
implicitly incorporate artificial matrices in the analysis, which are not feasible using the physical
FE model. For realistic industrially sized FE models, this conservatism could render the rest of the
analysis little useful.
A new efficient calculation strategy that remedies the excessive conservatism was introduced

by the authors [5]. It is a hybrid procedure, consisting of both a global optimisation and an
interval arithmetic part. In the first part, an optimisation is applied to calculate the exact interval
result at some intermediate step of the total algorithm. This is achieved by minimising and
maximising the intermediate results over the interval input parameter space. In the second part,
the interval arithmetical procedure is applied on these intermediate interval results. The main
advantage of this method is that all conservatism prior to the optimised intermediate results is
neutralised.
This approach has been successfully applied in an IFE procedure for the calculation of

undamped interval FRFs [15]. In the first part of this procedure, the optimisation is used to
translate the interval input parameter space to the exact ranges of the modal stiffness and mass
parameters of the structure. The calculation of the envelope FRFs in the second part is done by
applying the interval arithmetic equivalent of the modal superposition procedure on these interval
modal parameters. This procedure neutralises all conservatism in the matrix assembly phase, since
it directly uses the modal parameters as goal functions in the optimisation part. In order to extend
this procedure to damped structures, Section 3 now first summarises this procedure for undamped
structures.
3. Interval procedure for undamped frequency-response function analysis

In the remainder of this paper, a set is denoted by xS. A set generally consists of the union of a
number of interval objects. The range of a function f ðxÞ taking into account all possible values of
the function variable x inside a set xS is denoted by hf ixS .
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3.1. Interval response analysis based on modal superposition

The deterministic modal superposition concept states that, considering the first n modes, the
FRF between node j and k equals

FRFjk ¼
Xn

i¼1

Fik
Fij

UT
i KUi � o2UT

i MUi

(3)

with Ui the ith eigenvector of the system. Simplification of Eq. (3) yields

FRFjk ¼
Xn

i¼1

1

k̂i � o2m̂i

(4)

with k̂i and m̂i the normalised modal parameters

k̂i ¼
UT

i KUi

Fij
Fik

, (5)

m̂i ¼
UT

i MUi

Fij
Fik

. (6)

Fig. 2(a) gives a graphical overview of this deterministic modal superposition procedure. It
introduces the function DðoÞ ¼ ðk̂i � o2m̂iÞ to express the modal response denominator as a
function of the frequency. The corresponding IFE procedure results from a step by step set
Fig. 2. Translation of the deterministic modal superposition algorithm to an equivalent IFE procedure: (a)

deterministic algorithm and (b) set translated algorithm.
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translation of this algorithm, as illustrated in Fig. 2(b). This shows that the total envelope FRF
can be calculated in three principal steps:
1.
 for each mode, the translation of the interval input parameter space xI to the modal parameter

space, resulting in the modal parameters ranges hk̂iixI and hm̂iixI , which are combined in the
modal parameter set vector PS

i ,

2.
 for each mode, the calculation of the modal envelope FRF by substitution of the ranges of the

modal parameters in the denominator function DðoÞ, and subsequently inverting the resulting
denominator function range,
3.
 the summation of the individual envelope FRFs of all modes.

Steps 1 and 2 should be performed for each mode that is taken into account in the modal
superposition. Using this procedure, the computational cost is controllable by selecting only the
modes which contribute to the total FRF in the frequency domain of interest.
The modal parameter ranges in the first step of the procedure are calculated through a global

optimisation. By considering the modal parameters as direct functions of the uncertain model
properties x, their exact ranges can be calculated by performing a minimisation and a
maximisation over the interval input space. In the most straightforward implementation, the
ranges of both modal parameters are considered independently from one another. This results in
the Modal Rectangle method (MR). However, it is clear that the modal stiffness and mass of a
particular mode are coupled through the modal vector components of the considered FE model.
This means that the MR method can be improved by incorporating this dependency between the
modal parameters. This is achieved using the Modal Rectangle method with Eigenvalue interval

correction (MRE). The MR andMRE method are described more in detail in Sections 3.2 and 3.3,
respectively, using the basic three-step procedure described above.

3.2. The modal rectangle method

This procedure is based on a graphical interpretation in the modal parameter space. Each step
will refer to this graphical interpretation.

3.2.1. MR method, step 1
The first part of the MR procedure consists of the derivation of the ranges of the modal

parameters of each mode taking into account the complete interval input parameters space.
Theoretically, the modal parameters are fully coupled through the global system, and the exact
range of a mode’s modal parameter pairs equals:

hk̂i; m̂ii ¼ fðk̂i; m̂iÞ j ðx 2 xI Þg. (7)

The grey area in Fig. 3 represents a possible hk̂i; m̂ii-domain.
In the MR method, the coupling between the modal stiffness and mass is neglected. This means

that the modal parameter ranges are considered as mathematically independent entities:

hk̂iixI ¼ k̂i j ðx 2 xI Þ k̂i ¼
UT

i KUi

Fij
Fik

� �� �
, (8)
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Fig. 3. Graphical illustration of a mode’s hk̂i; m̂ii-domain and its approximation using the modal rectangle method.
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hm̂iixI ¼ m̂i j ðx 2 xI Þ m̂i ¼
UT

i MUi

Fij
Fik

� �� �
. (9)

Graphically, this means that the hk̂i; m̂ii-domain of Fig. 3 is approximated by a conservative
rectangle as indicated in the figure. The most straightforward numerical implementation would be
to calculate the bounds on the modal parameter ranges by minimising and maximising the modal
parameters over the interval input parameter space. However, the denominator of the modal
parameters defined in Eqs. (5) and (6) possibly equals zero. This will cause the optimisation to fail.

This problem is avoided by defining the inverse of the modal parameters expressed as k̂
�1

i and m̂�1
i

as goal functions for the optimisation. The resulting ranges hk̂
�1

i ixI and hm̂�1
i ixI can be proved to

be single continuous intervals. Furthermore, in many practical situations, the inverted modal
parameters are monotonic functions of the input properties, which generally leads to a fast
convergence in the optimisation procedure.
Using k̂

�1

i and m̂�1
i as goal functions, the modal parameter ranges are calculated from the

inversion of the intervals between the optimisation results. Based on the signs of these optimised
interval bounds, two different situations can occur. In the most general case, both the optimised
lower and upper bound have the same sign. Based on Eqs. (8) and (9), it can be seen that in this
case, after the inversion, the modal stiffness and the modal mass parameter range always have the
same sign. Therefore, the resulting hk̂i; m̂ii-domain approximation is situated either in the first or
in the third quadrant of the modal parameter space. The corresponding modes are referred to as
respectively positive modes and negative modes. The second situation occurs when the calculated
interval on the inversed modal parameters ranges over zero. In this case, the Kahan inversion [16]
is applied. This is an extension of the classical interval division that defines the result of the
inversion of an interval over zero to equal the union of two intervals ranging from a finite value to
infinity, respectively, in the negative and positive range of real numbers. The modal rectangle in
this case consists of two semi-infinite regions in the first and third quadrant of the modal
parameter space, and the modes are referred to as switch modes.
Leaving switch modes out of this discussion, the first step of the MR procedure results in the

description of the modal parameter ranges of the modes taken into account in the modal superposition

hk̂iixI ¼
1

k̂
�1

i

;
1

k̂i

�1

2
4

3
5 ¼ ½k̂i; k̂i�, (10)



ARTICLE IN PRESS

D. Moens, D. Vandepitte / Journal of Sound and Vibration 288 (2005) 431–462 439
hm̂iixI ¼
1

m̂i
�1

;
1

m̂�1
i

" #
¼ ½m̂i; m̂i�. (11)

For the further development of the algorithm, the modal parameter ranges are combined in a set
vector for each mode

PS
i ¼

hk̂iixI

hm̂iixI

( )
. (12)

3.2.2. MR method, step 2
In the second step of the MR procedure, the modal envelope FRF for each mode’s contribution

is calculated. The requested output of this step of the algorithm is the modal envelope FRF,
expressed as the range of the modal response function FRFi

jk taking into account the range of the
modal parameters in the vector PS

i

hFRFi
jkiPS

i
¼

1

k̂i � o2m̂i

j ðk̂i 2 hk̂iixI Þðm̂i 2 hm̂iixI Þ

� �
. (13)

The procedure first calculates the envelope of the modal denominator function DðoÞ, after which
this envelope is inverted. Graphically, the denominator function k̂i � o2m̂i ¼ D� represents a
straight line in the ðk̂i; m̂iÞ-space. All k̂i; m̂i-pairs on this line represent structures with equal values
D� for the modal FRF denominator function. This value is graphically equivalent with the
ordinate of the intersection of the line and the k̂i-axis. This is illustrated in Fig. 4. Using this
graphical interpretation, the exact range of the modal FRF denominator function hDðoÞixI follows
from constructing both lines with a slope o2 tangent to the exact hk̂i; m̂ii-domain, as illustrated in
Fig. 5. However, since the exact hk̂i; m̂ii-domain is unknown, the denominator function range has
to be approximated using the MR hk̂i; m̂ii-domain approximation. This is done using the upper left
and lower right corner of the rectangular approximation as also indicated in Fig. 5.
Numerically, the MR approximation of the denominator function range equals

hDðoÞiPS
i
¼ ½k̂i �o2m̂i; k̂i � o2 m̂i�. (14)

This function range is graphically illustrated in Fig. 6(a). From this figure, it is clear that the
modal denominator function range is an interval for every frequency in the frequency domain.
k̂i

m̂i

D* �2

k̂i − �2 mi = D*ˆ

Fig. 4. Graphical interpretation of the modal denominator function in the modal space.
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〈D(�)〉xI

Fig. 5. Conservatism in the modal FRF denominator function range calculation using the modal rectangle method.
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This interval contains zero for frequencies within the interval

oI
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
k̂i =m̂i

q
;

ffiffiffiffiffiffiffiffiffiffiffiffi
k̂i= m̂i

q� �
. (15)

This means that the Kahan inversion is required to invert the modal FRF denominator function
range of Eq. (14) for frequencies inside the oI

0 interval. This finally results in

hFRFi
jkiPS

i
¼

FRFi
jk FRF

i
jk

� �
8oeoI

0;

�1FRFi
jk

� �
[ FRFi

jk þ1

� �
8o 2 oI

0

8>>><
>>>:

(16)

with

FRFi
jk ¼

1

k̂i � o2 m̂i

, (17)
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FRFi
jk ¼

1

k̂i �o2m̂i

. (18)

Fig. 6(b) illustrates the result of the inversion the denominator function range in the frequency
domain.

3.2.3. MR method, step 3
The final step for the computation of the total envelope FRF consists of the summation of all

modal envelope FRFs. As indicated in Eq. (16), the response range differs for frequencies within
and outside the oI

0 interval. Therefore, the summation distinguishes between three sub cases
�
 for frequencies outside the oI
0 interval of every mode, the range of all terms in the summation is

an interval. At these frequencies, the range of the total FRF equals

FRFS
jk ¼

Xn

i¼1

FRFi
jk;
Xn

i¼1

FRFi
jk

" #
(19)
�
 for frequencies inside exactly one oI
0 interval, one term in the summation is the union of two

disjoint intervals over infinity. At these frequencies, the range of the total FRF equals

FRFS
jk ¼ �1;

Xn

i¼1

FRFi
jk

" #
[
Xn

i¼1

FRFi
jk;þ1

" #
(20)
�
 for frequencies inside overlapping oI
0 intervals, two or more terms are the union of two disjoint

intervals over infinity. At these frequencies, the range of the total FRF equals

FRFS
jk ¼ ½�1;þ1�. (21)

The conversion of the finally obtained envelope FRF into an envelope on the amplitude of the
FRF is trivial.

3.3. The modal rectangle method with eigenvalue interval correction

The enhancement in this procedure can be understood best in the graphical interpretation in the
modal parameter space. For the sake of briefness, the corresponding analytical derivation of all
the equations in the algorithm is not given in this paper, as it can be found in Ref. [15].
From Fig. 5 it is clear that combining the independently calculated modal parameter ranges to a

conservative rectangle around the exact hk̂i; m̂ii-domain introduces conservatism in the modal
denominator function range approximation, and consequently in the modal envelope FRFs. The
amount of conservatism will be substantial when the shape of the exact modal domain differs
thoroughly from the approximate rectangle. A possible strategy to reduce this conservatism is to

use a better approximation of the exact hk̂i; m̂ii-domain. This is achieved by introducing the exact
eigenvalue intervals into the analysis.
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Based on the fact that an eigenvalue li equals the quotient of the modal parameters k̂i and m̂i, it
is clear that an eigenvalue interval lI

i introduces an extra restriction on the set of possible
combinations of the modal parameters

li p
k̂i

m̂i

pli. (22)

In order to use this extra restriction in the MR procedure, the eigenvalue interval lI
i should

equal the exact range of the eigenvalue with respect to the interval input parameter space hliixI .
Similar to the calculation of the modal parameter ranges in the MR procedure, these can be
calculated through a global optimisation on the eigenvalues over the input interval space.
The enhancement resulting from this extra restriction is expressed in the redefinition of the
modal envelope FRF of Eq. (13) by adding the eigenvalue interval to the conditions of the set
definition

hFRFi
jkiCS

i
¼

1

k̂i � o2m̂i

j ðPi 2 PS
i Þ

k̂i

m̂i

2 hliixI

 !( )
(23)

with

CS
i ¼

PS
i

hliixI

( )
. (24)

Graphically, the eigenvalue bounds represent lines with the minimal and maximal possible slope

through the origin of the ðk̂i; m̂iÞ-space. These lines are extra delimiters for the hk̂i; m̂ii-domain
approximation as illustrated in Fig. 7.
Using the graphical interpretation as in Fig. 5, the approximate modal FRF denominator

function range is derived constructing lines tangent to the new hk̂i; m̂ii-domain approximation. In
this case these lines pass through the corner points of the polygonal hk̂i; m̂ii-domain
approximation indicated with triangles in the figure. The approximation of the upper bound of
the modal FRF denominator function range uses c1 for o2pli and c2 for o2

Xli, and the lower
k̂i , miˆ

k̂i

m̂i

c1

c2

c3

c4

k̂i = ˆ�i mi

k̂i = ˆ�i mi

Fig. 7. Effect of the introduction of the exact eigenvalue interval in the hk̂i; m̂ii-domain approximation of a positive

mode.
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bound uses c3 for o2p li and c4 for o2
X li. This results in the following analytical expressions:

hDðoÞiCS
i
¼

k̂i 1�
o2

li

� �
; k̂i 1�

o2

li

� �� �
for o2p li;

m̂iðli �o2Þ; k̂i 1�
o2

li

� �� �
for li oo2oli;

½m̂iðli �o2Þ; m̂iðli � o2Þ� for lipo2:

8>>>>>><
>>>>>>:

(25)

Fig. 8 illustrates the modal FRF denominator function range approximation using the MRE
approach. By introducing the exact eigenvalue intervals, the oI

0 domain now is narrowed to the
actual eigenfrequency range. This results in a substantial decrease of the width of the function
range compared to the MR method, as also illustrated in Fig. 8.
Finally, the modal envelope FRF results from the inversion of the enhanced modal FRF

denominator function range. This is completely similar to the procedure for the MR strategy
described in Section 3.2.2, and therefore is not repeated here. Since the MRE method clearly
reduces the conservatism in the hk̂i; m̂ii-domain approximation of every mode, it also reduces the
conservatism in the total envelope FRF. This will be illustrated on the numerical examples in the
second part of this paper.
4. Extension of the interval procedures to damped frequency-response function analysis

This section focusses on the FRF analysis of uncertain structures defined with interval
uncertainties. It aims at the extension of the envelope FRF analysis described in the previous
section to damped structures.

4.1. Introduction of damping in the interval FRF algorithm

Very often there is insufficient information to describe the damping properties of a structure
exactly. Therefore, modelling the damping mechanisms numerically proves to be an extremely
difficult task. This has given rise to a number of simplified damping models. These are inspired by
Fig. 8. Modal FRF denominator function range of a positive mode using the MRE method.
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mathematical considerations rather than by physical representation of the damping phenomena.
The fact that these simplified damping models are extremely popular does not mean that they are
always equally successful. It is clear that they are subject to uncertainty. However, they have
proven to adequately represent low damping while simultaneously, they simplify the computa-
tional procedures in the FE response analysis.
One of the most commonly applied damping models is Rayleigh (or proportional) damping. In

this model, the damping matrix is assumed to be a linear combination of the system mass and
stiffness matrices

C ¼ aKKþ aMM. (26)

This paper now focusses on the implications of proportional damping on the envelope FRF analysis.
A damping model with constant values for aK and aM is assumed. The proportional coupling
propagates the interval uncertainties on the stiffness and mass properties of the model to the damping
properties. It is clear that any damping interval can be obtained through the choice of the proportional
constants. However, since the damping in the analysis always varies proportionally with the stiffness
and mass properties through a constant linear combination, the values inside this damping interval are
not independently combined with all values in the mass and stiffness intervals. Therefore, using this
approach, damping cannot be implemented as an independent source of uncertainty.
Applying the modal superposition procedure on proportionally damped structures, the total

FRF equals

FRFjk ¼
Xn

i¼1

1

ðk̂i � o2m̂iÞ þ | ðaKk̂i þ aMm̂iÞo
(27)

with k̂i and m̂i the normalised modal parameters as defined in Eqs. (5) and (6). Eq. (27) shows that
the damped FRF calculation through the modal superposition principle is very similar to the
undamped case. As for the undamped case, the modal FRF contributions depend on the model
input parameters only through the modal stiffness and mass. This means that also for the
proportionally damped case, the range of the modal contributions can be calculated if the range of
the modal parameters is known. Both the MR and the MRE hk̂i; m̂ii-domain approximations
defined in the undamped procedure can be used for this purpose, since they define a conservative
approximation of the area of possible ðk̂i; m̂iÞ combinations in the modal space with respect to the
interval input parameter space. Consequently, in order to extend the undamped procedure to
proportionally damped structures, the behaviour of the damped modal FRF over the bounded
domain in the modal space has to be analysed.
Compared to the undamped case, the main difference is in the fact that the modal FRF

contributions now are complex functions. The procedure handles this by treating the real and the
complex parts of the response separately. For both parts, the response range is calculated for each
mode. The superposition then constructs the range of the real and imaginary parts of the total
response by adding together all real, respectively, imaginary modal FRF contributions. Finally,
based on these results, the amplitude and phase are directly derived from the total real and
imaginary envelope FRFs. The algorithm can be summarised as follows:
1.
 for all considered modes
(a) calculate the hk̂i; m̂ii-domain approximation (similar to the undamped case),
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(b) calculate the range of the modal real and imaginary FRF based on the hk̂i; m̂ii-domain
approximation,
2.
 sum the modal real and imaginary envelope FRFs to obtain a conservative approximation of
the total real and imaginary envelope FRFs,
3.
 post-process the real and imaginary parts to obtain the total amplitude and phase envelope FRF.

The first step on the modal level (step 1(a)) is completely similar to the undamped case and,
therefore, not repeated here. The core of the development is in step 1(b) which consists of the
analytical derivation of the modal real and imaginary envelope FRFs given the hk̂i; m̂ii-domain
approximation. Section 4.2 describes this in detail for, respectively, the real and imaginary part of
a damped modal FRF contribution of a positive mode. The results are then extended to negative
modes in Section 4.3. For the treatment of switch modes, the reader is referred to Ref. [17].
Finally, Section 4.4 describes the superposition of the modal contributions to a total real and
imaginary envelope FRF, and how these should be further processed in order to obtain the
amplitude and phase envelope FRF.

4.2. Damped modal FRF contributions

4.2.1. Real part analysis
The real part of the modal FRF in Eq. (27) equals

RðFRFi
jkÞ ¼

k̂i � o2m̂i

ðk̂i � o2m̂iÞ
2
þ ðaKk̂i þ aMm̂iÞ

2o2
. (28)

This is further referred to as the modal real FRF, and can be regarded as a function of the two
modal parameters k̂i and m̂i. Fig. 9 illustrates a possible behaviour of this modal real FRF as a
function of k̂i and m̂i. The IFE procedure requires the calculation of the range of this function
taking into account that the modal parameters are inside the used hk̂i; m̂ii-domain approximation.
It is now shown how this range can be derived analytically by analysing the surface that describes

the evolution of the real part of the response above the hk̂i; m̂ii-domain approximation. Fig. 9
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Fig. 9. Evolution of the modal real FRF in the modal parameter space.
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illustrates this surface for a specific frequency. It is important to note that this surface varies with
the frequency, which means that also the derived bounds should be expressed as frequency-
dependent functions.
A first important observation concerns the evolution of the modal real FRF over radial lines in

the modal parameter space. By substituting the modal parameters in Eq. (28) by equivalent radial
coordinates using k̂i ¼ r sin y and m̂i ¼ r cos y, the modal real FRF equals

RðFRFi
jkÞ ¼

1

r

sin y� o2 cos y

ðsin y� o2 cos yÞ2 þ ðaK sin yþ aM cos yÞ2o2

� �
. (29)

For a constant angle y, this is clearly a monotonic function of the radius r. Taking into account
the geometrical form of the MR and MRE hk̂i; m̂ii-domain approximations (see Figs. 3 and 7),
this implies that for both strategies, the extrema of the modal real FRF are located either on the
horizontal or on the vertical boundaries of the hk̂i; m̂ii-domain approximation. However, it is
impossible to predict on which of these four border lines the global extrema are located.
Furthermore, this location of the modal response extrema on the border lines depends on the
frequency. Therefore, each border line has to be investigated individually for the complete
frequency domain. The global extrema then can be easily derived by comparing the envelope
functions for each individual border line. The procedure to calculate the modal real FRF envelope
can be summarised to the following steps:
1.
 the calculation of the lower and upper bounds on the real FRF considering modal parameter
combinations on the individual vertical and horizontal border lines of the hk̂i; m̂ii-domain
approximation,
2.
 the calculation of the global lower and upper bounds on the modal real FRF by taking the
maximum of all upper bounds and minimum of all lower bounds of the envelope functions
resulting from the previous step.

The only difference between the MR and the MRE strategy is that through the introduction of the
eigenvalue boundaries in the MRE hk̂i; m̂ii-domain approximation, the section of the horizontal
and vertical lines that has to be analysed in the first step is reduced in length. For both strategies,
the core of the procedure is the analytical description of the modal real FRF above-bounded
horizontal and vertical lines in the modal parameter space, based on which the range of the
function can be derived. The remainder of this section describes an analytical method for this
derivation for both vertical and horizontal lines, using arbitrary bounds on these lines. This
method can be applied for both the MR and the MRE strategy by proper introduction of the
geometrical properties of the hk̂i; m̂ii-domain approximation into the procedure, i.e. the
coordinates of the bounding points of the horizontal and vertical lines that need to be analysed.
For the MR method, these are the coordinates of the corners of the modal rectangle. For the
MRE method, these are the coordinates of the upper right and lower left MR corners completed
with the coordinates of the corner points ci from Fig. 7.

4.2.1.1. Vertical lines in the modal parameter space. For the analysis of a vertical line in the
modal parameter space, a constant value m� is introduced for the modal mass parameter in
Eq. (28). This results in a function RðFRFi

jkÞm� which has only k̂i as variable. The analysis now
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focusses on the variation of this function when the modal stiffness parameter varies over a positive
interval ½k; k�. It can be shown that the modal real FRF as a function of k̂i has exactly one
minimum and one maximum as illustrated in Fig. 10. The extrema are reached for k̂i equal to,
respectively,

kþðoÞ ¼ m� o2 þ
oðaKo2 þ aMÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2Ko2

q
0
B@

1
CA, (30)

k�ðoÞ ¼ m� o2 �
oðaKo2 þ aMÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2Ko2

q
0
B@

1
CA. (31)

The explicit function of o indicates that the locations of the extrema depend on the frequency.
This is important for the derivation of the modal real FRF bounds. To analyse the evolution of
these bounds, k�ðoÞ and kþðoÞ are analysed in the frequency domain. Fig. 11 illustrates the global
form of both functions. The location of the maximum kþðoÞ is a monotonically increasing
function over the frequency domain. The location of the minimum k�ðoÞ has a horizontal
asymptote at k̂i ¼ k1

� . Both functions start in the origin of the k̂i-axis in Fig. 11. This means that
for low frequencies, both extrema in Fig. 10 are located to the left-hand side of any positive ½k; k�
interval on the k̂i-axis. For increasing frequency, both extrema approach and possibly cross the
interval. This can be interpreted as if the response function of Fig. 10 evolves globally to the right
relative to the ½k; k� interval. The implications of this evolution for the lower and upper bound of
the response is discussed by analysing the frequency domain in increasing direction.
�
 The lower response bound: For small frequencies, both extrema are situated to the left of the
½k; k� interval. Therefore, the lower bound on the real response corresponds to the upper bound
of the interval as indicated in Fig. 12(a). When the frequency increases, the response function
shifts to the right and the response maximum enters the ½k; k� interval. Further, a frequency is
reached for which the response values are equal for k and k (Fig. 12(b)). From this frequency
k̂i

ℜ  (FRFjk) m*i

k+ (�)

k− (�) 

Fig. 10. Evolution of the modal real FRF over the k̂i domain for a constant modal mass value.
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Fig. 11. Evolution of k�ðoÞ and kþðoÞ in the frequency domain.
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on, the response minimum is located on the lower bound of the ½k; k� interval (Fig. 12(c)). When
the frequency increases further, the response minimum enters the ½k; k� interval for some
frequency if the asymptotic value k1

� lies above k. Starting from this frequency, the response
minimum is located in the extremum inside the ½k; k� interval (Fig.12(d)) and the minimal value
of the response is obtained for the corresponding k�ðoÞ values. Finally, if the asymptotic value
k1
� lies above the ½k; k� interval, the response minimum reaches the upper bound of the interval
for some frequency. From this frequency on, the function over the interval becomes
monotonically decreasing and the response minimum is located in the upper bound of the
interval (Fig. 12(e)).
�
 The upper response bound: For small frequencies, both extrema are situated to the left of the
½k; k� interval. Therefore, the upper bound on the response corresponds to the lower bound of
the interval as indicated in Fig. 12(a). Since kþðoÞ is monotonically increasing, the location of
the response maximum always for some frequency enters the ½k; k� interval. Starting from this
frequency, the response maximum is located in the extremum inside the ½k; k� interval
(Fig. 12(b)). For these frequencies, the maximal value of the response is obtained for the
corresponding kþðoÞ values. Once the response maximum has reached the upper bound of the
½k; k� interval, the response maximum is located in the upper bound of the interval (Fig. 12(c)).
When the frequency increases further, the response minimum enters the ½k; k� interval if the
asymptotic value k1

� lies above k. It can be proven that if the asymptotic value lies above the
midpoint of the ½k; k� interval, a frequency is reached for which the response values are equal
for k and k (Fig. 12(d)). From this frequency on, the response maximum is located on the lower
bound of the ½k; k� interval (Fig. 12(e)).

This description shows that the exact upper and lower bounds on the modal real FRF above an
interval on a vertical line in the modal parameter space follow directly from an analytical
procedure. The procedure consists of selecting the correct k̂i value which, combined with the m�

value at the vertical line, yields the bounds of the modal real FRF. This correct k̂i value always lies
either on one of the bounds of the ½k; k� interval, either in an extremum of the modal real FRF
inside the interval. The evolution of this k̂i value as a function of o corresponding to the
descriptions above is illustrated in Fig. 13(a) for the lower bound and in Fig. 13(b) for the upper
bound.
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The frequencies ol
1, o

l
2, o

u
1 and ou

2 represent the points where, respectively, k�ðoÞ and kþðoÞ
cross with k̂i ¼ k and k̂i ¼ k. Therefore, they satisfy

k ¼ m� ol
1

2
�

ol
1ðaKol

1

2
þ aMÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2Ko
l
1

2
q

0
B@

1
CA, (32)
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Fig. 13. Evolution of the k̂i value corresponding to the extrema of the modal real FRF at a vertical line in the modal

parameter space: (a) lower bound and (b) upper bound.
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k ¼ m� ol
2

2
�

ol
2ðaKol

2

2
þ aMÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2Ko
l
2

2
q

0
B@

1
CA, (33)

k ¼ m� ou
1
2
þ

ou
1ðaKou

1
2 þ aMÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2Ko
u
1
2

q
0
B@

1
CA, (34)

k ¼ m� ou
2
2
þ

ou
2ðaKou

2
2 þ aMÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2Ko
u
2
2

q
0
B@

1
CA. (35)

Furthermore, ol
¼ and ou

¼ follow directly from satisfying the equation:

RðFRFi
jkðo¼ÞÞk;m� ¼ RðFRFi

jkðo¼ÞÞk;m� . (36)

This means that the curve of optimal k̂i values given in Fig. 13 is completely described
analytically, and the bounds on the real FRF over the vertical line can be calculated by
substituting the values on this curve into Eq. (28).
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4.2.1.2. Horizontal lines in the modal parameter space. The procedure to calculate the bounds on
the modal real FRF above a horizontal line in the modal parameter space is very similar to the
one for the vertical lines described above. A constant value k� is introduced for the modal stiffness
parameter in Eq. (28). This results in a function RðFRFi

jkÞk� which has only m̂i as variable. The
analysis now focusses on the variation of this function when the modal mass parameter varies
over a positive interval ½m;m�. It can be shown that the resulting function of m̂i has exactly one
maximum and one minimum as illustrated in Fig. 14. The extrema are reached for m̂i equal to,
respectively,

mþðoÞ ¼ k� 1

o2
þ

aM þ aKo2

o2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 þ a2M

q
0
B@

1
CA (37)

m�ðoÞ ¼ k� 1

o2
�

aM þ aKo2

o2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 þ a2M

q
0
B@

1
CA (38)

To analyse the evolution of the bounds of the modal real FRF for all frequencies, m�ðoÞ and
mþðoÞ are analysed analytically in the frequency domain. Fig. 15 illustrates the global form of
both functions. The location of the minimum mþðoÞ is a monotonically decreasing function over
the frequency domain. The location of the maximum m�ðoÞ starts from m0

� on the m̂i-axis. Both
mþðoÞ and m�ðoÞ tend to zero when o tends to infinity.
The implications of the evolution of m�ðoÞ and mþðoÞ for the lower and upper bound of the

response is similar to the description for the vertical boundary in Fig. 12. The difference is that in
this case the locations of the extrema decrease for increasing o and that the minimum and
maximum have switched positions. Still, the exact upper and lower bounds on the modal real
FRF above an interval on a horizontal line in the modal parameter space follow directly from a
similar analytical procedure. The procedure consists of selecting the correct m̂i value which,
combined with the k� value at the horizontal line, yields the lower and upper bound of the modal
real FRF. The evolution of this correct m̂i value as a function of o is illustrated in Fig. 16(a) for
the lower bound and in Fig. 16(b) for the upper bound.
m̂i

ℜ  FRF
i

jk k*

m+ (�)

m− (�)
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Fig. 14. Evolution of the modal real FRF over the m̂i domain for a constant modal stiffness value.
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Fig. 16. Evolution of the m̂i value corresponding to the extrema of the modal real FRF at a horizontal line in the modal

parameter space: (a) lower bound and (b) upper bound.
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The frequencies ol
1, o

l
2, o

u
1 and ou

2 represent the points where, respectively, mþðoÞ and m�ðoÞ
cross with m̂i ¼ m and m̂i ¼ m. Therefore, they satisfy
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m ¼ k� 1
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Furthermore, ol
¼ and ou

¼ follow directly from satisfying the equation:

RðFRFi
jkðo¼ÞÞm;k� ¼ RðFRFi

jkðo¼ÞÞm;k� . (43)

This means that the curve of optimal m̂i values given in Fig. 16 is completely described
analytically, and the bounds on the real FRF over the horizontal line can be calculated by
substituting the values on this curve into Eq. (28).

4.2.2. Imaginary part analysis
The imaginary part of the modal FRF in Eq. (27) equals

IðFRFi
jkÞ ¼

�oðaKk̂i þ aMm̂iÞ

ðk̂i � o2m̂iÞ
2
þ ðaKk̂i þ aMm̂iÞ

2o2
. (44)

This is further referred to as the modal imaginary FRF. Again, the IFE procedure requires the
calculation of the range of this function taking into account that the modal parameters are inside
the hk̂i; m̂ii-domain approximation.
As for the real part, a radial analysis is performed by substituting the modal parameters in

Eq. (44) by equivalent radial coordinates k̂i ¼ r sin y and m̂i ¼ r cos y

IðFRFi
jkÞ ¼ �

1

r

o aK sin yþ aM cos yð Þ

ðsin y� o2 cos yÞ2 þ ðaK sin yþ aM cos yÞ2o2

� �
. (45)

Also here, for a constant angle y, this is clearly a monotonic function of the radius r. Again, this
implies that for both the MR and MRE strategy, the extrema of the modal imaginary FRF are
located either on the horizontal or on the vertical boundaries of the hk̂i; m̂ii-domain
approximation. Completely similar to the real part analysis, the procedure to calculate the
resulting modal imaginary envelope FRF relies completely on the derivation of the modal
imaginary FRF range over horizontal and vertical bounded lines in the modal space.

4.2.2.1. Vertical lines in the modal parameter space. The introduction of a constant value m� for
the modal mass parameter in Eq. (44) results in a function IðFRFi

jkÞm� which has only k̂i as
variable. The analysis now focusses on the variation of this function when k̂i varies over a positive
interval ½k; k�. It can be shown that the modal imaginary FRF as a function of k̂i has exactly one
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maximum and one minimum as illustrated in Fig. 17. The extrema are reached for k̂i equal to,
respectively,

kþðoÞ ¼ m� �
aM

aK

þ
aKo2 þ aM

aK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2Ko2

q
0
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1
CA, (46)

k�ðoÞ ¼ m� �
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2Ko2

q
0
B@

1
CA. (47)

It is easily shown that k�ðoÞ is negative for all frequencies. Therefore, it is of no importance in the
derivation of the response bounds over a positive ½k; k� interval. The location of the minimum kþðoÞ
has possibly a local minimum, after which it asymptotically tends to infinity as illustrated in Fig. 18.
The exact upper and lower bounds on the modal imaginary FRF above an interval on a vertical

line in the modal parameter space follow directly from an analytical procedure similar to the
modal real FRF range calculation. The procedure is simpler because the response now only has
one extremum that has to be taken into account. The procedure consists of selecting the correct k̂i

value which, combined with the m� value at the vertical line yields the lower and upper bound of
the modal imaginary FRF. The evolution of this optimal k̂i value as a function of o is illustrated
in Fig. 19(a) for the lower bound and in Fig. 19(b) for the upper bound.
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Fig. 17. Evolution of the modal imaginary FRF over the k̂i domain for a constant modal mass value.
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Fig. 19. Evolution of the k̂i value corresponding to the extrema of the modal imaginary FRF at a vertical line in the

modal parameter space: (a) lower bound and (b) upper bound.
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Furthermore, ou
¼ follows directly from satisfying the equation:

IðFRFi
jkðo

u
¼ÞÞk;m� ¼ IðFRFi

jkðo
u
¼ÞÞk;m� . (50)

This means that the curve of optimal k̂i values given in Fig. 19 is completely described
analytically, and the bounds on the imaginary FRF over the vertical line can be calculated by
substituting the values on this curve into Eq. (44).
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4.2.2.2. Horizontal lines in the modal parameter space. The introduction of a constant value k�

for the modal stiffness parameter in Eq. (44) results in a function IðFRFi
jkÞk� which has only m̂i as

variable. The analysis focusses on the variation of this function when m̂i varies over a positive
interval ½m;m�. It can be shown that the modal imaginary FRF as a function of m̂i has exactly one
maximum and one minimum as illustrated in Fig. 20. The extrema are reached for m̂i equal to,
respectively,

mþðoÞ ¼ k�
�

aK

aM

þ
aKo2 þ aM

aMo
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2M þ o2

q
0
B@

1
CA, (51)

m�ðoÞ ¼ k�
�

aK

aM

�
aKo2 þ aM

aMo
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2M þ o2

q
0
B@

1
CA. (52)

It is easily shown that m�ðoÞ is negative for all frequencies. Therefore, it is not of importance
in the derivation of the response bounds over a positive ½m;m� interval. The location of
the minimum mþðoÞ starts from infinity at o ¼ 0 after which it possibly has a local minimum.
Finally, it tends to zero when the frequency tends to infinity. Fig. 21 illustrates its global
form.
The exact upper and lower bounds on the modal imaginary FRF above an interval on a

horizontal line in the modal parameter space follow directly from an analytical procedure similar
to the procedure for a vertical line. The procedure consists of selecting the correct m̂i value which,
combined with the k� value at the horizontal line yields the lower and upper bound of the modal
imaginary FRF. Again, the optimal m̂i value always lies either on one of the bounds of the ½m;m�

interval, either in the extremum of the modal imaginary FRF inside the interval. The evolution of
this optimal m̂i value as a function of o is illustrated in Fig. 22(a) for the lower bound and in Fig.
22(b) for the upper bound.
m̂i

ℑ  (FRFjk) k*
i

m+ (�)

m− (�)

Fig. 20. Evolution of the modal imaginary FRF over the m̂i domain for a constant modal stiffness value.



ARTICLE IN PRESS

m̂i

�

m+ (�)

Fig. 21. Evolution of mþðoÞ in the frequency domain.
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Fig. 22. Evolution of the m̂i value corresponding to the extrema of the modal imaginary FRF at a horizontal line in the

modal parameter space: (a) lower bound and (b) upper bound.
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The frequencies ol
1 and ol

2 represent the points where mþðoÞ crosses, respectively, with m̂i ¼ m
and m̂i ¼ m. Therefore, they satisfy

m ¼ k�
�

aK

aM

þ
aKol

1

2
þ aM

aMo
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2M þ ol

1

2
q

0
B@

1
CA, (53)
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m ¼ k�
�

aK

aM

þ
aKol

2

2
þ aM

aMo
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2M þ ol

2

2
q

0
B@

1
CA. (54)

Furthermore, ou
¼ follows directly from satisfying the equation:

IðFRFi
jkðo

u
¼ÞÞm;k� ¼ IðFRFi

jkðo
u
¼ÞÞm;k� (55)

This means that the curve of optimal m̂i values given in Fig. 22 is completely described
analytically, and the bounds on the imaginary FRF over the horizontal line can be calculated by
substituting the values on this curve into Eq. (44).

4.3. The modal envelope FRF for negative modes

The analytical procedures in Sections 4.2.1 and 4.2.2 consider only positive ranges for the
modal parameters. They require that the hk̂i; m̂ii-domain approximations of the analysed modes
are located in the first quadrant of the modal parameter space, and, therefore, are limited to
positive modes. The goal is to apply these procedures also for negative modes. This can be
achieved by considering the MRE hk̂i; m̂ii-domain approximation of a negative mode mirrored
into the first quadrant of the modal parameter space. This is equivalent with switching the sign of
the modal parameters. The corresponding horizontal and vertical boundaries on the mirrored
modal parameters are then

�k̂i ¼ �ðk̂iÞ, (56)

�k̂i ¼ �ðk̂iÞ, (57)

�m̂i ¼ �ðm̂iÞ, (58)

�m̂i ¼ �ðm̂iÞ. (59)

The bounds on the eigenfrequency remain unchanged. The parameters �k̂i and �m̂i now are
located in the first quadrant and, therefore, the procedures described in Sections 4.2.1 and 4.2.2
yield the bounds on RðFRFi

jkÞ�k̂i ;�m̂i
and IðFRFi

jkÞ�k̂i ;�m̂i
. These now lead to the required

boundary functions RðFRFi
jkÞk̂i ;m̂i

and IðFRFi
jkÞk̂i ;m̂i

using the following equality:

RðFRFi
jkÞk̂i ;m̂i

¼ �RðFRFi
jkÞ�k̂i ;�m̂i

, (60)

IðFRFi
jkÞk̂i ;m̂i

¼ �IðFRFi
jkÞ�k̂i ;�m̂i

. (61)

Eqs. (60) and (61) imply that the correct result of the procedure is achieved by compensating for
the modal parameter sign inversion in the following way:

RðFRFi
jkÞk̂i ;m̂i

¼ �ðRðFRFi
jkÞ�k̂i ;�m̂i

Þ, (62)

RðFRFi
jkÞk̂i ;m̂i

¼ �ðRðFRFi
jkÞ�k̂i ;�m̂i

Þ (63)
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for the real part, and

IðFRFi
jkÞk̂i ;m̂i

¼ �ðIðFRFi
jkÞ�k̂i ;�m̂i

Þ, (64)

IðFRFi
jkÞk̂i ;m̂i

¼ �ðIðFRFi
jkÞ�k̂i ;�m̂i

Þ (65)

for the imaginary part. The conclusion is that with an appropriate pre- and post-processing of the
data used in and obtained from the procedures for the positive modes, the equivalent procedure
for the negative modes is easily implemented.
4.4. Total amplitude and phase envelope FRF calculation

The total amplitude and phase envelope FRF are calculated using the total real and imaginary
envelope FRFs. These result from the summation of the modal contributions derived in the
previous section

RFRFjkÞ
I
¼
Xn

i¼1

RðFRFi
jkÞ

I
; (66)

IðFRFjkÞ
I
¼
Xn

i¼1

IðFRFi
jkÞ

I
: (67)

This summation is easily implemented because the modal response contributions all describe a
finite interval both for the real and the imaginary part of the FRF. Consequently, the summation
of all lower, respectively, upper bounds yields the bounds on the total FRF.
The result of the summation is an interval range for the real and imaginary part of the complex

response for every frequency. This means that it defines a rectangle in the complex space in which
the response vector is contained. Based on this rectangle, an approximation of the amplitude
range of the complex response is easily obtained by taking the points on the rectangle which are,
respectively, the nearest and most distant from the origin. The phase range is derived in a similar
ℑ (FRFjk)

ℑ (FRFjk)
I

ℜ (FRFjk)

ℜ (FRFjk)
I

〈||FRFjk||〉CI

〈� (FRFjk)〉CI

Fig. 23. Conversion of the real and imaginary FRF range to the amplitude and phase FRF range.
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way. Fig. 23 illustrates this procedure. This results in

hkFRFjkkiCI , ð68Þ

hjðFRFjkÞiCI ð69Þ

with

CI ¼
RðFRFjkÞ

I

IðFRFjkÞ
I

( )
. (70)

It should be noted that this final conversion to amplitude and phase envelope FRFs as shown in
Fig. 23 considers the imaginary and real part of the FRF independently. Although the situation in
the figure is exaggerated in order to clarify this point, this introduces an additional source of
conservatism. This source is due to the fact that not every combination of real and imaginary
parts within the rectangle is feasible. This is equivalent to the decoupling of the modal mass and
stiffness in the modal space as discussed for the MRmethod. However, while in the modal domain
the conservatism was introduced in the analysis of each individual mode, in the amplitude and
phase conversion, the conservatism is introduced only through a single operation on the final
response. Therefore, the introduced conservatism is limited, as will be shown in the numerical test
cases in part two of this paper.
5. Conclusions

This paper describes a numerical procedure for numerical FRF analysis of damped structures
with fuzzy uncertainties. It focusses on the numerical core of the analysis, i.e. the envelope FRF
calculation. Because of the damping, the FRF is a complex function of the frequency. Generally,
most interest is paid to the amplitude and phase of this complex function. Therefore, the goal of
the procedure is to acquire the amplitude and phase envelope FRFs.
The development of the procedure starts from the MR and MRE methodology already

available for undamped envelope FRF analysis. Using the proportional damping concept, the
modal superposition principle remains the basis for the damped procedure. In the first step of the
procedure, the real and imaginary parts of the modal envelope FRFs are calculated based on the
MR or MRE approximations of the range of the modal parameters. In the next step, these real
and imaginary modal contributions are summed to obtain the corresponding total envelope
FRFs. The amplitude and phase envelope FRFs finally can be derived from the combination of
the total real and imaginary envelope FRFs.
The calculation of the modal envelope FRFs proves to be the most challenging part of the

numerical algorithm. This paper shows that, given the MR or MRE hk̂i; m̂ii-domain
approximation from the undamped procedure, it is always possible to obtain the exact bounds
on the range of the real and imaginary part of the modal FRF analytically. These bounds always
correspond to a combination of the modal parameters located in a point either on the horizontal
or on the vertical border lines of the hk̂i; m̂ii-domain approximation. Analytical procedures are
derived to locate these combinations based on the geometrical description of the MR or MRE
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hk̂i; m̂ii-domain approximation. This finally results in an analytical procedure to derive the modal
real and imaginary envelope FRFs.
Since all modal envelope FRFs obtained from the previous step consist of finite intervals, the

summation to the total real and imaginary envelope FRF is straightforward. The calculation of
the amplitude and phase range then combines independently the real and imaginary part of the
total FRF. This yields a rectangular range in the complex space, from which the corresponding
lower and upper bounds on the amplitude and phase are easily derived.
From a numerical point of view, the most relevant conclusion is that, using the principle of

proportional damping, the total damped procedure proves to be an analytical extension of the
undamped procedure. This means that the damped analysis does not require additional
optimisation steps in the modal space. Therefore, the computation time for damped envelope
FRFs is comparable to the computation time for the undamped envelope FRFs.
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